Fireside Fridays

Layer 2 Communication Week 5

Thanks to our sponsors!

Special Thanks to...

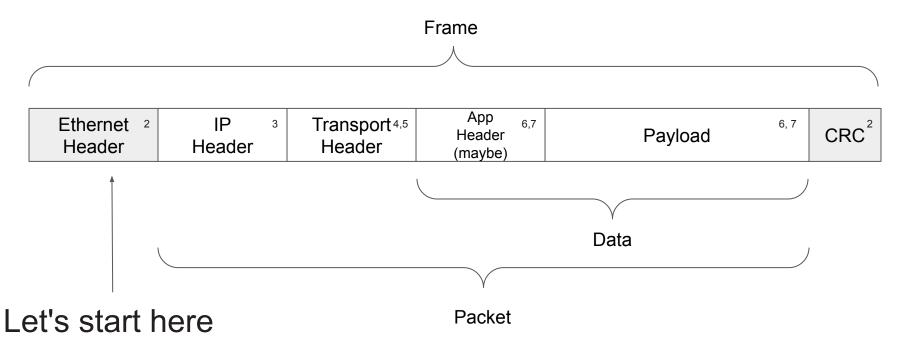
- Hermon ((h,k)
- Emily FiresSerpent
- Both gave up many late nights to help with QA and development of this content
- Very much appreciate their efforts!
- Please give them a warm "thanks" the next time you see them online

Lab requirements for this section

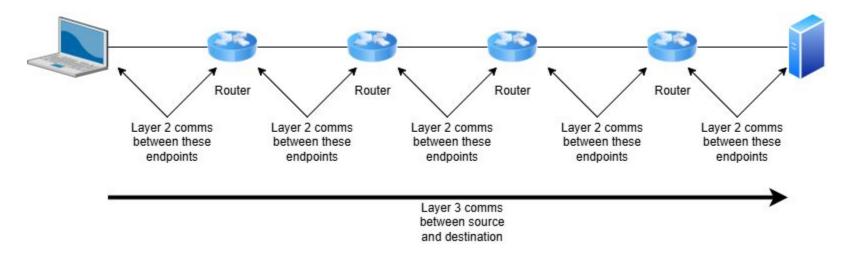
- Windows or Linux system
- Labs will be at the command line or terminal

Traffic control technologies

- We'll discuss tech used to modify IP traffic flow
- Need the basics to understand architecture
- Not designed to be a complete tutorial
- Will focus more on the security aspects


OSI model for communications

The seven layers of the OSI model


7	APPLICATION	Accesses protocols used by applications to communicate data to end users
6	PRESENTATION	Configures data into an acceptable format via translation, encryption, and compression
5	SESSION	Manages connections and the opening and closing of sessions between devices
4	TRANSPORT	Handles data transmission between devices using UDP and TCP protocols
3	NETWORK	Conducts routing between different networks, determining the most efficient path
2	DATA LINK	Handles node-to-node data transfer between devices on the same network
1	PHYSICAL	Converts data into bits to carry it across physical network equipment

Framework describing communication rules so that dissimilar systems remain compatible with each other

Anatomy of a transmission

How comms work

Layer 2 info replaced at each router
The means the outer frame is stripped and replaced

What's the Ethernet header look like?

```
> Frame 1: 122 bytes on wire (976 bits), 122 bytes captured (976 bits)
> Ethernet II, Src: Intel_51:86:d7 (dc:8b:28:51:86:d7), Dst: BrocadeCommu_1f:55:80 (60:9c:9f:1f:55:80)
> Destination: BrocadeCommu 1f:55:80 (60:9c:9f:1f:55:80)
> Source: Intel_51:86:d7 (dc:8b:28:51:86:d7)
    Type: IPv4 (0x0800)
> Internet Protocol Version 4, Src: 10.20.57.3, Dst: 10.10.2.22
> User Datagram Protocol, Src Port: 59580, Dst Port: 53
> Domain Name System (query)
```

MAC = 6 bytes Usually in Hex

Byte separators can vary

IPv4

IPv6

```
Frame 1: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface en13, id 0

Ethernet II, Src: RealtekS_36:1c:43 (00:e0:4c:36:1c:43), Dst: Apple_2d:92:61 (38:c9:86:2d:92:61)

Destination: Apple_2d:92:61 (38:c9:86:2d:92:61)

Source: RealtekS_36:1c:43 (00:e0:4c:36:1c:43)

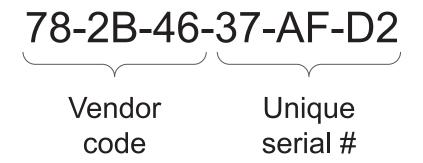
Type: IPv6 (0x86dd)

Internet Protocol Version 6, Src: 2001:db8:1::1, Dst: 2001:db8:2::2

Internet Control Message Protocol v6
```

WiFi (802.11) frame

```
Frame 35: 138 bytes on wire (1104 bits), 138 bytes captured (1104 bits) on interface en1, id 0
 IEEE 802.11 QoS Data, Flags: .p.....TC
      Type/Subtype: QoS Data (0x0028)
    Frame Control Field: 0x8841
      .000 0000 0011 0000 = Duration: 48 microseconds
      Receiver address: c2:4a:00:6d:2f:7b (c2:4a:00:6d:2f:7b)
      Transmitter address: Apple c7:ae:0d (48:d7:05:c7:ae:0d)
      Destination address: Tp-LinkT 6d:2f:7c (c0:4a:00:6d:2f:7c)
      Source address: Apple c7:ae:0d (48:d7:05:c7:ae:0d)
      BSS Id: c2:4a:00:6d:2f:7b (c2:4a:00:6d:2f:7b)
      STA address: Apple c7:ae:0d (48:d7:05:c7:ae:0d)
      .... 0000 = Fragment number: 0
      0000 0011 0011 .... = Sequence number: 51
      Frame check sequence: 0xcf408f97 [unverified]
      [FCS Status: Unverified]
      Oos Control: 0x0006
    CCMP parameters
 Logical-Link Control
      DSAP: SNAP (0xaa)
      SSAP: SNAP (0xaa)
     Control field: U, func=UI (0x03)
      Organization Code: 00:00:00 (Officially Xerox, but
      Type: IPv4 (0x0800)
 Internet Protocol Version 4, Src: 192.168.1.217, Dst: 192.168.1.1
```


Internet Control Message Protocol

802.11has a lot more header info than Ethernet

Needed to facilitate radio frequency comms

This is why Ethernet at the same speed is more efficient than Wifi

MAC addresses example

Code identifies this as an Intel card

http://standards-oui.ieee.org/oui/oui.txt

MAC address lookup

https://www.wireshark.org/tools/oui-lookup.html

https://www.wireshark.org/download/automated/data/manuf

ole, Inc.
corporation
cu, Inc
sung Electronics Co.,Ltd
da Technology Co.,Ltd.Dongguan branch
enzhen YOUHUA Technology Co., Ltd
omi Communications Co Ltd

Hands-on walkthrough - MAC addresses

- This walkthrough will work on Windows, Linux or Mac systems
 - Command is the same on all platforms
 - Output may appear slightly different from examples
- Open a command prompt or terminal window
- Run the following command:

Windows example

```
C:\Users\cbren>arp -a
Interface: 10.0.0.101 --- 0x4
  Internet Address
                       Physical Address
                                              Type
 10.0.0.1
                       08-a7-c0-2b-62-84
                                              dynamic
                                              dynamic
 10.0.0.18
                       d8-31-34-32-a9-4a
 10.0.0.66
                       84-ea-ed-8f-a2-2e
                                              dynamic
 10.0.0.86
                       5c-62-5a-81-97-aa
                                              dynamic
                                              dynamic
 10.0.0.131
                       bc-d7-d4-6d-75-b6
 10.0.0.197
                       84-ea-ed-19-d6-37
                                              dynamic
 10.0.0.255
                       ff-ff-ff-ff-ff
                                              static
                                              static
 224.0.0.22
                       01-00-5e-00-00-16
 224.0.0.251
                                              static
                       01-00-5e-00-00-fb
 224.0.0.252
                       01-00-5e-00-00-fc
                                              static
 239.255.255.250
                       01-00-5e-7f-ff-fa
                                              static
                       ff-ff-ff-ff-ff
 255.255.255.255
                                              static
Interface: 192.168.56.1 --- 0x10
 Internet Address
                        Physical Address
                                              Type
                                              static
 192,168,56,255
                        ff-ff-ff-ff-ff
 224.0.0.2
                       01-00-5e-00-00-02
                                              static
 224.0.0.22
                       01-00-5e-00-00-16
                                              static
 224.0.0.251
                       01-00-5e-00-00-fb
                                              static
  224.0.0.252
                       01-00-5e-00-00-fc
                                              static
  239.255.255.250
                       01-00-5e-7f-ff-fa
                                              static
                       ff-ff-ff-ff-ff
  255.255.255.255
                                              static
```

Learned from the network via ARP

Preprogrammed (configure at OS)

Limit entries to a single network interface

```
C:\Windows\system32>arp /a /n 192.168.69.223
Interface: 192.168.69.223 --- 0x4
 Internet Address
                        Physical Address
                                              Type
                                              dynamic
 192.168.69.1
                        84-47-09-33-71-db
 192.168.69.11
                        68-1d-ef-34-f6-2e
                                              dynamic
 192.168.69.16
                        02-60-2d-56-eb-bb
                                              dynamic
 192.168.69.117
                                              dynamic
                        36-f0-db-9b-2e-f1
                                              dynamic
 192.168.69.144
                        84-ea-ed-8f-a2-2e
 192.168.69.201
                        6c-2a-df-e0-5a-72
                                              dynamic
 192.168.69.224
                                              dynamic
                        d8-31-34-32-a9-4a
 192.168.69.255
                        ff-ff-ff-ff-ff
                                              static
  224.0.0.22
                        01-00-5e-00-00-16
                                              static
 224.0.0.251
                        01-00-5e-00-00-fb
                                              static
 224.0.0.252
                        01-00-5e-00-00-fc
                                              static
                                              static
  239.255.255.250
                        01-00-5e-7f-ff-fa
 255.255.255.255
                        ff-ff-ff-ff-ff
                                              static
C:\Windows\system32>
```

ARP on Linux

```
cbrenton@server2:~$ arp -a
? (192.168.69.179) at d4:31:27:4e:46:d5 [ether] on enp2s0
? (192.168.69.161) at 26:6e:a8:3d:98:06 [ether] on enp2s0
? (192.168.69.1) at 84:47:09:33:71:db [ether] on enp2s0
? (192.168.69.224) at d8:31:34:32:a9:4a [ether] on enp2s0
? (192.168.69.16) at 02:60:2d:56:eb:bb [ether] on enp2s0
? (192.168.69.166) at 6e:83:c4:38:03:60 [ether] on enp2s0
? (192.168.69.14) at 5c:62:5a:81:97:aa [ether] on enp2s0
? (192.168.69.223) at 78:2b:46:37:af:d2 [ether] on enp2s0
? (192.168.69.130) at cc:47:40:ad:0b:cd [ether] on enp2s0
? (192.168.69.173) at bc:24:11:83:5a:7f [ether] on enp2s0
? (192.168.69.117) at 36:f0:db:9b:2e:f1 [ether] on enp2s0
? (192.168.69.170) at 84:ea:ed:55:de:de [ether] on enp2s0
? (192.168.69.13) at 40:62:31:03:2d:d1 [ether] on enp2s0
? (192.168.69.237) at bc:24:11:34:b2:7c [ether] on enp2s0
? (192.168.69.144) at 84:ea:ed:8f:a2:2e [ether] on enp2s0
? (192.168.69.10) at 84:47:09:1d:a0:a3 [ether] on enp2s0
? (192.168.69.201) at 6c:2a:df:e0:5a:72 [ether] on enp2s0
? (192.168.69.168) at d0:01:ed:67:4a:21 [ether] on enp2s0
? (192.168.69.234) at 9a:e9:87:db:af:ee [ether] on enp2s0
? (192.168.69.110) at bc:24:11:5b:0e:26 [ether] on enp2s0
cbrenton@server2:~$
```

Some entries may be outdated

```
cbrenton@server2:~$ ip neighbor
192.168.69.179 dev enp2s0 lladdr d4:31:27:4e:46:d5 STALE
192.168.69.161 dev enp2s0 lladdr 26:6e:a8:3d:98:06 STALE
192.168.69.1 dev enp2s0 lladdr 84:47:09:33:71:db REACHABLE
192.168.69.224 dev enp2s0 lladdr d8:31:34:32:a9:4a REACHABLE
192.168.69.16 dev enp2s0 lladdr 02:60:2d:56:eb:bb STALE
192.168.69.166 dev enp2s0 lladdr 6e:83:c4:38:03:60 STALE
192.168.69.14 dev enp2s0 lladdr 5c:62:5a:81:97:aa STALE
192.168.69.223 dev enp2s0 lladdr 78:2b:46:37:af:d2 DELAY
192.168.69.130 dev enp2s0 lladdr cc:47:40:ad:0b:cd STALE
192.168.69.173 dev enp2s0 lladdr bc:24:11:83:5a:7f STALE
192.168.69.117 dev enp2s0 lladdr 36:f0:db:9b:2e:f1 STALE
192.168.69.170 dev enp2s0 lladdr 84:ea:ed:55:de:de STALE
192.168.69.13 dev enp2s0 lladdr 40:62:31:03:2d:d1 STALE
192.168.69.237 dev enp2s0 lladdr bc:24:11:34:b2:7c STALE
192.168.69.144 dev enp2s0 lladdr 84:ea:ed:8f:a2:2e REACHABLE
192.168.69.10 dev enp2s0 lladdr 84:47:09:1d:a0:a3 DELAY
192.168.69.201 dev enp2s0 lladdr 6c:2a:df:e0:5a:72 STALE
192.168.69.168 dev enp2s0 lladdr d0:01:ed:67:4a:21 STALE
192.168.69.234 dev enp2s0 lladdr 9a:e9:87:db:af:ee STALE
192.168.69.110 dev enp2s0 lladdr bc:24:11:5b:0e:26 STALE
cbrenton@server2:~$
```

Reachable - Active entry

Stale - entry > 30S old

Delay - Attempting to update stale entry

Probe - During delay, move from broadcast to unicast ARP attempt

Linux public cloud example

```
cbrenton@cb-lab:~$ arp -a
? (161.35.113.79) at fe:00:00:00:01:01 [ether] on eth0
? (161.35.112.95) at fe:00:00:01:01 [ether] on eth0
? (161.35.122.227) at fe:00:00:00:01:01 [ether] on eth0
 (161.35.117.30) at fe:00:00:00:01:01 [ether] on eth0
antivirus-avg.com (161.35.120.97) at fe:00:00:00:01:01 [ether]
 (161.35.119.216) at fe:00:00:00:01:01 [ether] on eth0
? (161.35.127.107) at fe:00:00:00:01:01 [ether] on eth0
prod-jerry-se-scanners-nyc1-21.do.binaryedge.ninja (161.35.124
her] on eth0
? (161.35.127.194) at fe:00:00:00:01:01 [ether] on eth0
? (161.35.125.12) at fe:00:00:01:01 [ether] on eth0
? (161.35.116.178) at fe:00:00:00:01:01 [ether] on eth0
gateway (161.35.112.1) at (fe:00:00:00:01:01) [ether] on eth0
```

Bogus MAC used by provider Used for traffic isolation

How does ARP work?

	No.	Time	Source	Destination	Protocol	Length	Info	
	1	0.000000	Universa_6c:0c:cc	Broadcast	ARP	60	Who has 10.10.10.1? Tell 10.10.10.2	
	2	0.000030	Dell_f0:92:ab	Universa_6c:0c:cc	ARP	42	10.10.10.1 is at 00:1d:09:f0:92:ab	
	3	0.000505	10.10.10.2	10.10.10.1	ICMP	98	Echo (ping) request id=0x2093, seq=1/256, ttl=	=64 (reply in 4)
	4	0.000531	10.10.10.1	10.10.10.2	ICMP	98	Echo (ping) reply id=0x2093, seq=1/256, ttl=64	4 (request in 3)
	5	5.000468	Dell_f0:92:ab	Universa_6c:0c:cc	ARP	42	Who has 10.10.10.2? Tell 10.10.10.1	
	6	5.000985	Universa 6c:0c:cc	Dell f0:92:ab	ARP	60	10.10.10.2 is at 00:1a:6b:6c:0c:cc	
E-	nno 1, 60	hutor on wino (48	0 hits\ 60 butes continued (490 b	.:		0000 f	f ff ff ff ff 00 la 6b 6c 0c cc 08 06 00 01	kl
			0 bits), 60 bytes captured (480 b				f ff ff ff ff 60 la 6b 6c 0c cc 08 06 00 01 3 00 06 04 00 01 00 la 6b 6c 0c cc 0a 0a 0a 02	kl
	hernet II	, Src: Universa_6c	:0c:cc (00:1a:6b:6c:0c:cc), Dst:			0010 0		kl
Et	hernet II Destina Source: Type: A Padding	, Src: Universa_6c ation: Broadcast (1 : Universa_6c:0c:co ARP (0x0806)	:0c:cc (00:1a:6b:6c:0c:cc), Dst: ff:ff:ff:ff:ff) c (00:1a:6b:6c:0c:cc)			0010 0 0020 0	3 00 06 04 00 01 00 1a 6b 6c 0c cc 0a 0a 0a 02	No.

Have IP address, need MAC for local delivery Broadcast is sent to find MAC

ARP response

No.	Time	Source	Destination	Protocol	Length	Info
1	0.000000	Universa_6c:0c:cc	Broadcast	ARP	60	Who has 10.10.10.1? Tell 10.10.10.2
2	0.000030	Del1_f0:92:ab	Universa_6c:0c:cc	ARP	42	10.10.10.1 is at 00:1d:09:f0:92:ab
3	0.000505	10.10.10.2	10.10.10.1	ICMP	98	Echo (ping) request id=0x2093, seq=1/256, ttl=64 (reply in 4)
4	0.000531	10.10.10.1	10.10.10.2	ICMP	98	Echo (ping) reply id=0x2093, seq=1/256, ttl=64 (request in 3)
5	5.000468	Dell_f0:92:ab	Universa_6c:0c:cc	ARP	42	Who has 10.10.10.2? Tell 10.10.10.1
6	5.000985	Universa_6c:0c:cc	Dell_f0:92:ab	ARP	60	10.10.10.2 is at 00:1a:6b:6c:0c:cc
	No. 1 2 3 4 5	1 0.000000 2 0.00030 3 0.000505 4 0.000531 5 5.000468	1	1 0.000000 Universa_6c:0c:cc Broadcast 2 0.00030 Dell_f0:92:ab Universa_6c:0c:cc 3 0.00505 10.10.10.2 10.10.10.1 4 0.00531 10.10.10.1 10.10.10.2 5 5.000468 Dell_f0:92:ab Universa_6c:0c:cc	1 0.000000 Universa_6c:0c:cc Broadcast ARP 2 0.00030 Dell_f0:92:ab Universa_6c:0c:cc ARP 3 0.000505 10.10.10.2 10.10.10.1 ICMP 4 0.000531 10.10.10.1 10.10.10.2 ICMP 5 5.000468 Dell_f0:92:ab Universa_6c:0c:cc ARP	1 0.000000 Universa_6c:0c:cc Broadcast ARP 60 2 0.00030 Dell_f0:92:ab Universa_6c:0c:cc ARP 42 3 0.000505 10.10.10.2 10.10.10.1 ICMP 98 4 0.000531 10.10.10.1 10.10.10.2 ICMP 98 5 5.000468 Dell_f0:92:ab Universa_6c:0c:cc ARP 42

```
Frame 2: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)

Ethernet II, Src: Dell f0:92:ab (00:1d:09:f0:92:ab), Dst: Universa_6c:0c:cc (00:1a:6b:6c:0c:cc)

Destination: Universa_6c:0c:cc (00:1a:6b:6c:0c:cc)

Source: Dell_f0:92:ab (00:1d:09:f0:92:ab)

Type: ARP (0x0806)

Address Resolution Protocol (reply)

Hardware type: Ethernet (1)

Protocol type: IPv4 (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: reply (2)

Sender MAC address: Dell_f0:92:ab (00:1d:09:f0:92:ab)

Sender IP address: 10.10.10.1

Target MAC address: Universa_6c:0c:cc (00:1a:6b:6c:0c:cc)

Target IP address: U.10.10.10.2
```

MAC returned in ARP response Notice there is no authentication Good thing computers never lie;-)

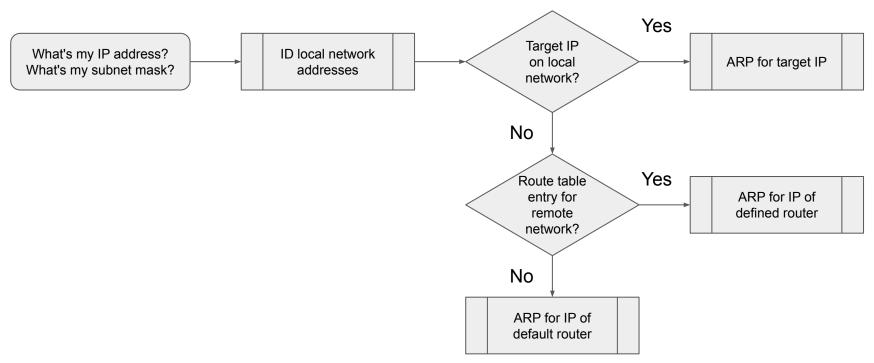
Data delivery after ARP

No.	Time	Source	Destination	Protocol	Length	Info
1	0.000000	Universa_6c:0c:cc	Broadcast	ARP	60	Who has 10.10.10.1? Tell 10.10.10.2
2	0.000030	Dell_f0:92:ab	Universa_6c:0c:cc	ARP	42	10.10.10.1 is at 00:1d:09:f0:92:ab
3	0.000505	10.10.10.2	10.10.10.1	ICMP	98	Echo (ping) request id=0x2093, seq=1/256, ttl=64 (reply in 4)
4	0.000531	10.10.10.1	10.10.10.2	ICMP	98	Echo (ping) reply id=0x2093, seq=1/256, ttl=64 (request in 3)
5	5.000468	Del1_f0:92:ab	Universa_6c:0c:cc	ARP	42	Who has 10.10.10.2? Tell 10.10.10.1
6	5.000985	Universa 6c:0c:cc	Dell_f0:92:ab	ARP	60	10.10.10.2 is at 00:1a:6b:6c:0c:cc

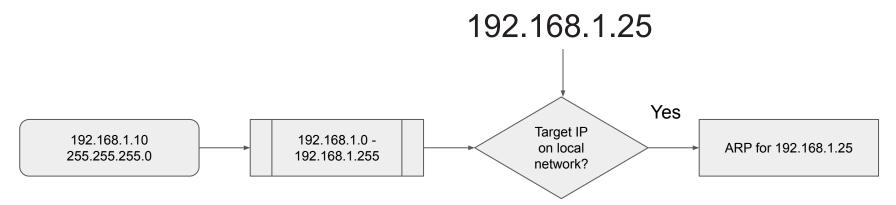
```
Frame 3: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)
```

Once the MAC is learned, data is delivered

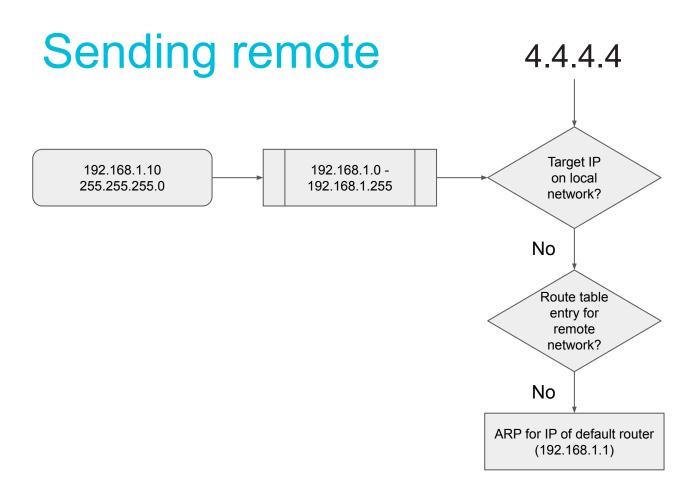
[▼] Ethernet II, Src: Universa_6c:0c:cc (00:1a:6b:6c:0c:cc), Dst: Dell_f0:92:ab (00:1d:09:f0:92:ab)


Destination: Dell_f0:92:ab (00:1d:09:f0:92:ab)

Source: Universa_6c:0c:cc (00:1a:6b:6c:0c:cc) Type: IPv4 (0x0800)


Internet Protocol Version 4, Src: 10.10.10.2, Dst: 10.10.10.1

Internet Control Message Protocol

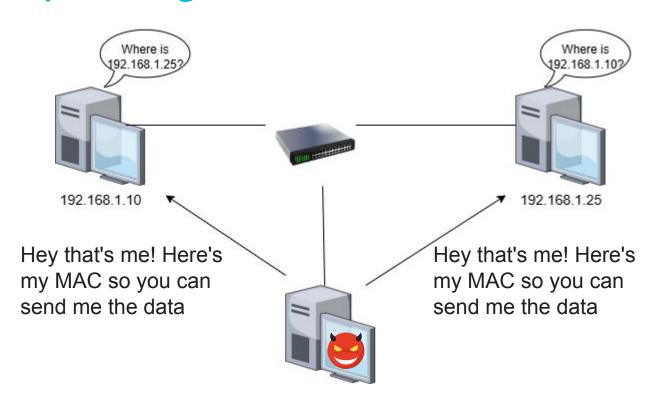

IP transmission decision tree

Sending local

Network = 192.168.1 Unique host = 10

Switches

- Works at layer 2 of the OSI (ARP)
- Ethernet, FDDI, Frame Relay, WiFi are examples
 - We'll focus on Ethernet & WiFi as most popular
- Learns which MACs are connected to each port
- Forwards traffic to correct port based on target MAC
- MAC is supposed to be globally unique
 - Address can usually can be changed via software
- Broadcasts and multicasts sent to every port


Benefits of a switch

- Reduce network congestion
 - Traffic sent only to where it needs to go
 - Multiple systems can transmit at the same time
- Reduce CPU time on each system
 - Only see traffic you need to process
- Provide security through obscurity
 - Most systems cannot see all traffic
- Admin can set a port to monitor traffic when needs
 - Called "span", "mirror", or "copy" port depending on vendor

How to attack a switch

- Layer 2 is typically unauthenticated
 - Trivial to spoof or forge
- Provides opportunities for traffic hijacking
- Could permit me to see data or change stream
- High end switches have protection features
- But not all techniques are defendable
- Attacker must have local access to exploit

ARP spoofing due to no authentication

Common ARP attacks

- ARP cache poisoning
 - Port stealing falls in this category
 - Overwrite ARP cache entry with attacker's MAC
- ARP cache flooding
 - Turn switch into a hub
- DHCP spoofing
- ICMP redirects
 - Type 5, code 0 or 1

ARP defense

- ARP cache poisoning
 - Dynamic ARP inspection
- ARP cache flooding
 - Limit number of MACs per port
- DHCP spoofing
 - DHCP snooping
- ICMP redirects
 - Disable dynamic learning of route info (ouch)

WiFi deauthentication attack

- Most of WiFi comms are encrypted/authenticated
- Deauthentication packets are not
- Disconnects endpoint from wireless Access Point (AP)
- Evil twin attack connect user to rogue AP
- Force repeated WPA 4-way handshakes
 - Improves the chances of cracking AP password
- Root cause is poor authentication at layer 2
- Will go deeper after covering VPN technology

Next week on Fireside Fridays!!!

- Routing and VLANs!
- VLANs creating multiple logical networks over a single physical medium
- Routing protocols Link state, distance vector and static
 OH MY!
- Same bat time, same bat webcast link :-)

Wrap up

- Thank you for attending!
- Certs & video usually go out in 24 hours
- If you have any lingering questions, the Discord channel will remain active
 - Also a good chance to socialize with others in the class
 - Have other tips and tricks? Please share with others!
 - Posting screenshots can be helpful :-)